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A sufficient condition for reasonability

Lemma (Step 3)

Let Γ be a Wadge class in 2ω that is closed under intersections
with Π0

2 sets and unions with Σ0
2 sets. Then Γ is reasonably closed.

Proof.
Pick A ∈ Γ. We need to show that φ−1[A] ∪ Q0 ∈ Γ.
By Van Wesep’s Theorem, fix D ⊆ P(ω) such that Γ = ΓD(2ω).

Set Z = 2ω \ (Q0 ∪ Q1), and notice that φ−1[A] ∈ ΓD(Z ) by the
Relativization Lemma. Therefore, again by the Relativization
Lemma, there exists B ∈ ΓD(2ω) = Γ such that B ∩ Z = φ−1[A].

Since Z ∈ Π0
2(2ω), it follows from our assumptions that

φ−1[A] ∈ Γ, hence φ−1[A] ∪ Q0 ∈ Γ.

In particular, it follows that both Σ0
ξ(2ω) and Π0

ξ(2ω) are
reasonably closed whenever 3 ≤ ξ < ω1. (But we will need to be
much more sophisticated than that!)



Three steps to reasonability

Γ = [X ] for some homogeneous X ⊆ 2ω such that X /∈ ∆(Dω(Σ0
2))

��

Γ is a good Wadge class

��

Γ is closed under ∩Π0
2 and ∪Σ0

2

��

Γ is reasonably closed



The notion of level
From now on, ξ < ω1 and Γ, Λ are Wadge classes in Z .

Definition (Louveau, Saint-Raymond, 1988)

I `(Γ) ≥ ξ if PUξ(Γ) = Γ

I `(Γ) = ξ if `(Γ) ≥ ξ and `(Γ) 6≥ ξ + 1

I `(Γ) = ω1 if `(Γ) ≥ ξ for every ξ < ω1

We refer to `(Γ) as the level of Γ.

Examples:

I `(Γ) ≥ 0 for every Γ

I `({∅}) = `({Z}) = ω1

I `(Σ1
n) = `(Π1

n) = ω1 for every n ∈ ω
I `(Σ0

1+ξ) = `(Π0
1+ξ) = ξ

Notice that if `(Γ) ≥ ξ then Γ is closed under ∩∆0
1+ξ.



The expansion theorem

Definition (Wadge, 1984)

Γ(ξ) = {f −1[A] : A ∈ Γ and f : Z −→ Z is Σ0
1+ξ-measurable}

We will refer to Γ(ξ) as an expansion of Γ. To see what happens
with regard to Hausdorff operations, it can be shown that

ΓD(Z )(ξ) = {HD(A0,A1, . . .) : A0,A1, . . . ∈ Σ0
1+ξ(Z )}

Theorem (Louveau)

Assume that Γ is non-selfdual. Then the following conditions are
equivalent:

I `(Γ) ≥ ξ
I There exists a non-selfdual Λ such that Λ(ξ) = Γ



Good Wadge classes

Definition
We will say that Γ is good if the following are satisfied:

I Γ is non-selfdual

I ∆(Dω(Σ0
2)) ⊆ Γ

I `(Γ) ≥ 1

Lemma (Step 2)

If Γ is good then Γ is closed under ∩Π0
2 and ∪Σ0

2.

Proof.
Andretta, Hjorth and Neeman proved that if ∆(Dω(Σ0

1)) ⊆ Λ then
Λ is closed under ∩Π0

1 and ∪Σ0
1. Since `(Γ) ≥ 1 there exists Λ

such that Λ(1) = Γ. Apply the above mentioned result to Λ, then
transfer it to Γ using expansions.



The proof of Step 1
Let X ⊆ 2ω be dense and homogeneous, with X /∈ ∆(Dω(Σ0

2)).
We need to show that [X ] is a good Wadge class.

Fix a minimal non-selfdual Γ such that there exists a non-empty
U ∈ Σ0

1(2ω) such that X ∩ U ∈ Γ or X ∩ U ∈ Γ̌. Assume that
X ∩ U ∈ Γ. First we will show that Γ is good, then that [X ] = Γ.

Assume, in order to get a contradiction, that X ∩U ∈ ∆(Dω(Σ0
2)).

Notice that U = {h[X ∩ U] : h is a homeomorphism of X} is a
cover of X because X is homogeneous and dense in 2ω.

Furthermore, since Dω(Σ0
2) is a good Wadge class, the following

lemma shows that each element of U belongs to it:

Lemma (Good Wadge classes are “topological”)

Let Γ be a good Wadge class in Z . If A ∈ Γ and B ≈ A then
B ∈ Γ.

Using a countable subcover of U , write X as a partitioned union of
sets in Dω(Σ0

2), where the elements of the partition are ∆0
2.



Since `(Dω(Σ0
2)) ≥ 1, it follows that X ∈ Dω(Σ0

2). A similar
argument shows that X ∈ Ďω(Σ0

2). This contradicts our
assumptions, so X ∩ U /∈ ∆(Dω(Σ0

2)).

It remains to show that `(Γ) ≥ 1. Assume, in order to get a
contradiction, that `(Γ) = 0. Then, applying the following with
Z = U will contradict the minimality of Γ:

Lemma
Assume that Γ is non-selfdual and that `(Γ) = 0. Let X ∈ Γ be
codense in Z . Then there exist a non-empty V ∈ ∆0

1(Z ) and a
non-selfdual Λ such that Λ ( Γ and X ∩ V ∈ Λ.

Now that we know that Γ is a good Wadge class, since X ∩ U ∈ Γ,
we can apply the same homogeneity argument as above to see that
X ∈ Γ, so [X ] ⊆ Γ. It remains to show that [X ] ( Γ is impossible.

If X is non-selfdual, this would directly contradict minimality of Γ.
Otherwise, minimality would be contradicted after applying the
analysis of the selfdual sets.



Finishing the proof
Let X be a zero-dimensional homogeneous space that is not locally
compact. Without loss of generality, assume that X is a dense
subspace of 2ω. If X ∈ ∆(Dω(Σ0

2)), then X is strongly
homogeneous by van Engelen’s results. Therefore, we can also
assume without loss of generality that X /∈ ∆(Dω(Σ0

2)).

Fix s ∈ 2<ω, and let Y = X ∩ [s]. As in the proof of Step 1, using
also the Relativization Lemma, one can show that X and Y are
everywhere properly Γ = [X ] (in 2ω and [s] ≈ 2ω respectively).

Since X is homogeneous, either X is meager or it is Baire (hence
comeager in 2ω by AD). The same will be true of Y .

Hence Y ≈ X by Steel’s theorem. The following result concludes
the proof that X is strongly homogeneous:

Theorem (Terada, 1993)

Let X be a space. Assume that X has a base B ⊆ ∆0
1(X ) such

that U ≈ X for every U ∈ B. Then X is strongly homogeneous.



Open questions
As we have seen, for spaces of complexity higher than ∆(Dω(Σ0

2)),
Baire category and Wadge class are sufficient to uniquely identify a
homogeneous zero-dimensional space. This is the “uniqueness”
part of the classification. But the “existence” part is still open:

Question
For exactly which good Wadge classes Γ is there a homogeneous X
such that Γ = [X ]? For which ones is there a meager such X?
For which ones is there a Baire such X?

Does the usual pattern of results under AD hold?

Question
Assuming V = L, is it possible to construct a zero-dimensional Π1

1

or Σ1
1 space that is homogeneous, not locally compact, and not

strongly homogeneous?



What happens below ∆(Dω(Σ0
2))?

Q

**

Q× 2ω

ttωω

��

Q× ωω

�� ��

T

��

S

��

Q× T

**

Q× S

tt· · ·



The definition of filter

Definition (Wikipedia, 2016)

A filter is a coffee-brewing utensil, usually made of disposable
paper.

This enables it to trap the coffee grounds and allow the liquid
coffee to flow through.



The definition of filter (for real)
Whenever X ⊆ P(ω), we will identify X with the subspace of 2ω

consisting of the characteristic functions of elements of X .

Definition
A semifilter is a collection S ⊆ P(ω) that satisfies the following
conditions:

1. ∅ /∈ S and ω ∈ S
2. If X ∈ S and X =∗ Y ⊆ ω then Y ∈ S
3. If X ∈ S and X ⊆ Y ⊆ ω then Y ∈ S

Notice that Fin ∩ S = ∅ and Cof ⊆ S for every semifilter S. In
particular, no semifilter is locally compact.

Definition
A filter is a semifilter F such that the following holds:

4. If X ,Y ∈ F then X ∩ Y ∈ F



Filters are deliciously
homogeneous!



A characterization of Borel filters
As we have seen, the combinatorial structure of filters imposes
strong constraints on their topology. But is it possible to go in the
other direction as well?
In other words, given a space, is it possible to recognize whether it
is homeomorphic to a filter?
This problem has a very elegant solution in the Borel realm:

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space that is not locally
compact. Then the following conditions are equivalent:

I X is homeomorphic to a filter

I X is homogeneous, meager, and homeomorphic to its square

The above characterization inspired the following ZF + DC result:

Theorem (Medini and Zdomskyy, 2016)

Every filter is homeomorphic to its square.



What about semifilters?

Theorem (Medini, 2019)

Let X be a zero-dimensional Borel space that is not locally
compact. Then the following conditions are equivalent:

I X is homeomorphic to a semifilter

I X is homogeneous

Easy counterexamples show that the “Borel” assumption cannot
be altogether dropped in ZFC, but the following two natural
questions are open (hopefully, not for long):

Question
Under AD, can the “Borel” assumption be dropped in the above
characterization of semifilters?

Question
Under AD, can the “Borel” assumption be dropped in van
Engelen’s characterization of filters?



Two concrete non-trivial examples: S and T
Theorem (van Mill, 1983; van Douwen)

Let X be a zero-dimensional space.

I X ≈ S if and only if X is the union of a complete subspace
and a σ-compact subspace, X is nowhere σ-compact, and X
is nowhere the union of a complete and a countable subspace

I X ≈ T if and only if X is the union of a complete subspace
and a countable subspace, X is nowhere σ-compact, and X is
nowhere complete

Fix infinite sets Ω1 and Ω2 such that Ω1 ∪ Ω2 = ω and
Ω1 ∩ Ω2 = ∅. Define

T = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or x2 ∈ Cof(Ω2))}



It is clear that T is a semifilter. Furthermore, T is the union of the
following spaces:

I {x ⊆ ω : x ∩ Ω1 /∈ Fin(Ω1)} ≈ ωω × 2ω ≈ ωω

I {x1 ∪ x2 : x1 ∈ Fin(Ω1) and x2 ∈ Cof(Ω2)} ≈ Q
Using the fact that T is homogeneous, one can easily see that T is
nowhere σ-compact and nowhere complete. Hence T ≈ T.

To describe S, also fix an infinite Ω ⊆ Ω2 such that Ω2 \ Ω is
infinite. Define

S = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or Ω ⊆∗ x2)}

Using an argument similar to the one that works for T , one can
show that S ≈ S.



Thank you for your attention

and have a good evening!


